题目内容

矩形的一条对角线长为8cm,两条对角线的一个交角为60°,则它的边长分别为
4,4
3
4,4
3
分析:根据矩形的性质推出OA=OB,证出等边△OAB,求出BA,根据勾股定理求出BC即可得到答案.
解答:解:∵四边形ABCD是矩形,
∴AC=BD,OA=OC,OD=OB,
∴OA=OB,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴OA=OB=AB=
1
2
AC=4,
∵矩形ABCD,
∴AB=CD=4,∠ABC=90°,
在△ABC中,由勾股定理得:BC=
AC2-AB2
=
82-42
=4
3

∴AD=BC=4
3

∴它的边长分别为4,4
3

故答案为:4,4
3
点评:本题主要考查对矩形的性质,等边三角形的性质和判定,勾股定理等知识点的理解和掌握,能求出AB的长是解此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网