题目内容
若方程-
x2+kx-3=0无实数根,求k的取值范围.
| 3 |
| 4 |
∵方程-
x2+kx-3=0无实数根,
∴△=b2-4ac=k2-4×(-
)×(-3)=k2-9<0,
即(k-3)(k+3)<0,
∴-3<k<3.
所以k的取值范围为-3<k<3.
| 3 |
| 4 |
∴△=b2-4ac=k2-4×(-
| 3 |
| 4 |
即(k-3)(k+3)<0,
∴-3<k<3.
所以k的取值范围为-3<k<3.
练习册系列答案
相关题目