题目内容

如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,交AD于F,若CF=AB,试猜想∠ACD的度数是多少?并证明.
分析:先由条件可以得出△ABD≌△CFD,就可以得出AD=AC,由等腰直角三角形的性质就可以得出∠ACD的度数.
解答:解:∠ACD=45°
理由:∵AD⊥BC,CE⊥AB,
∴∠ADB=∠ADC=∠BEC=90°,
∴∠B+∠BAD=90°,∠B+∠BCE=90°,
∴∠BAD=∠BCE.
在△ABD和△CFD中
∠ADB=∠ADC
∠BAD=∠BCE
AB=CF

∴△ABD≌△CFD(AAS)
∴AD=CD.
∵∠ADC=90°,
∴∠ACD=45°.
点评:本题考查了直角三角形的性质的运用,等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网