题目内容

如图,在△ABC中,AB=AC,点D,E分别在AC,AB上,且BC=BD=DE=EA,则∠A的度数为


  1. A.
    36°
  2. B.
    数学公式
  3. C.
    30°
  4. D.
    24°
B
分析:由已知根据等腰三角形的性质可得到几组相等的角,再根据三角形外角的性质可得到∠C与∠A之间的关系,从而再利用三角形内角和定理求解即可.
解答:∵AE=ED,
∴∠ADE=∠A,
∴∠DEB=∠A+∠ADE=2∠A,
∵BD=ED,
∴∠ABD=∠DEB=2∠A,
∴∠BDC=∠A+∠ABD=3∠A,
∵BD=BC,
∴∠C=∠BDC=3∠A,
∵AB=AC,
∴∠ABC=∠C=3∠A,
∵∠ABC+∠C+∠A=180°,
∴7∠A=180°,
∴∠A=
故选B.
点评:此题主要考查等腰三角形的性质,三角形内角和定理及三角形的外角的性质的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网