题目内容
如图,在△ABC中,∠B=90°,若按图中虚线剪去∠B,则∠1+∠2等于
- A.90°
- B.135°
- C.270°
- D.315°
C
分析:如图,根据题意可知∠1=90°+∠BNM,∠2=90°+∠BMN,然后结合三角形内角和定理即可推出∠1+∠2的度数.
解答:
解:如图.∵△ABC为直角三角形,∠B=90°,
∴∠BNM+∠BMN=90°,
∵∠1=90°+∠BNM,∠2=90°+∠BMN,
∴∠1+∠2=270°.
故选C.
点评:本题主要考查三角形的外角性质、三角形内角和定理,关键在于得出∠1=90°+∠BNM,∠2=90°+∠BMN.
分析:如图,根据题意可知∠1=90°+∠BNM,∠2=90°+∠BMN,然后结合三角形内角和定理即可推出∠1+∠2的度数.
解答:
∴∠BNM+∠BMN=90°,
∵∠1=90°+∠BNM,∠2=90°+∠BMN,
∴∠1+∠2=270°.
故选C.
点评:本题主要考查三角形的外角性质、三角形内角和定理,关键在于得出∠1=90°+∠BNM,∠2=90°+∠BMN.
练习册系列答案
相关题目