题目内容
分解因式: .
如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是( )
A.5 B.6 C.7 D.8
如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为 .
定义:
数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.
理【解析】
⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为“智慧三角形”(画出点的位置,保留作图痕迹);
⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为“智慧三角形”,并说明理由;
运用:
⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.
如图,在中,,斜边的两个端点分别在相互垂直的射线上滑动,下列结论:
①若两点关于对称,则;
②两点距离的最大值为;
③若平分,则;
④斜边的中点运动路径的长为.
其中正确的是 .
已知为常数,点在第二象限,则关于的方程根的情况是()
A.有两个相等的实数根 B.有两个不相等的实数根 C.没有实数根 D.无法判断
已知四边形的一组对边的延长线相交于点.
(1)如图1,若,求证;
(2)如图2,若,,,,的面积为6,求四边形的面积;
(3)如图3,另一组对边的延长线相交于点,若,,,直接写出的长(用含的式子表示).
点关于轴对称的坐标为( )
A. B. C. D.
有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是 .