题目内容
绝对值大于或等于1,而小于4的所有正整数的和是( )
A. 8 B. 7 C. 6 D. 5
(1)如图甲,AB∥CD,∠2与∠1+∠3的关系是什么?并写出推理过程;
(2)如图乙,AB∥CD,写出∠2+∠4与∠1+∠3+∠5的数量关系,并写出证明过程;
(3)如图丙,AB∥CD,试问∠2+∠4+∠6与∠1+∠3+∠5+∠7还有类似的数量关系吗?
若有,请直接写出,并将它们推广到一般情况,用一句话写出你的结论.
一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是( )
A. B. C. D.
如果a、b互为倒数,c、d互为相反数,且m=—1,则式子=_______.
下列说法正确的有( )(1)—a一定是负数;(2)有理数分为正有理数和负有理数;(3)如果a大于b,那么a的倒数小于b的倒数;(4)几个有理数相乘,负因数的个数是奇数个时,积为负数;(5)符号不同的两个数互为相反数
A. 0个 B. 1个 C. 2个 D. 3个
如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.
(1)判断△BEC的形状,并说明理由?
(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;
(3)求四边形EFPH的面积.
如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有_______个正方形.
第1幅 第2幅 第3幅 第4幅
如图,抛物线经过原点O(0,0),点A(1,1),点B(,0).
(1)求抛物线解析式;
(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;
(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.
如图,在Rt△ABC中,∠ACB = 90°,BC = 2.将△ABC绕顶点C逆时针旋转得到△A′B′C,使点B′落在AC边上.设M是A′B′的中点,连接BM,CM,则△BCM的面积为( )
A. 1 B. 2 C. 3 D. 4