题目内容
光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50m/min的速度向正东方向行走,在A处测得建筑物C在北偏东60°方向上,20min后他走到B处,测得建筑物C在北偏西45°方向上,求建筑物C到公路AB的距离.(已知
【答案】分析:作CD⊥AB于D,构造出Rt△ACD与Rt△BCD,求出AB的长度.根据平行线的性质求出三角形各角之间的关系,利用特殊角的三角函数值求解.
解答:
解:作CD⊥AB于D.
设AD=x,则BD=50×20-x=1000-x.
∵∠EAC=60°,
∴∠CAB=90°-60°=30°.
在Rt△BCD中,
∵∠FBC=45°,
∴∠CBD=∠BCD=45°,
∴CD=DB=1000-x.
在Rt△ACD中,
∵∠CAB=30°,
∴CD=tan30°•AD,
即DB=CD=tan30°•AD=1000-x=
x,
解得:x≈633.98,
∴CD=1000-633.98=366.02.
答:建筑物C到公路AB的距离为366.02m.
点评:此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.
解答:
设AD=x,则BD=50×20-x=1000-x.
∵∠EAC=60°,
∴∠CAB=90°-60°=30°.
在Rt△BCD中,
∵∠FBC=45°,
∴∠CBD=∠BCD=45°,
∴CD=DB=1000-x.
在Rt△ACD中,
∵∠CAB=30°,
∴CD=tan30°•AD,
即DB=CD=tan30°•AD=1000-x=
解得:x≈633.98,
∴CD=1000-633.98=366.02.
答:建筑物C到公路AB的距离为366.02m.
点评:此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.
练习册系列答案
相关题目