题目内容
如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D。
(1)求证:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度数。
如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC的中点,BD平分∠ABC,点F在AB上,且BF = BC.
求证:(1)DF = AE;
(2)DE⊥AC
如图5,中,DE是BC的垂直平分线,DE交AC于点E, 连接BE,若BE=9,BC=12,则cosC= * .
不等式组的解是
A. B. ≥3 C. 1≤<3 D. 1<≤3
方程的根是
如图,抛物线交轴正半轴于点A,顶点为M,对称轴NB交轴于点B,过点C(2,0)作射线CD交MB于点D(D在轴上方),OE∥CD交MB于点E,EF∥轴交CD于点F,作直线MF。【版权所有:21教育】
(1)求点A,M的坐标;
(2)当BD=1时,
①求直线MF的解析式,并判断点A是否落在该直线上;
②延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1,S2,S3,则S1:S2:S3=
如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是………………………………………………( )
A、AD=BD; B、OD=CD;
C、∠CAD=∠CBD; D、∠OCA=∠OCB.
已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.
(1)求证:DE⊥BE; (2)如果OE⊥CD,求证:BD·CE=CD·DE.
如图,直线,,…,是一组等距离的平行线,过直线上的点A作两条射线,分别与直线,相交于点B,E,C,F。若BC=2,则EF的长是