题目内容

证明题:
在△ABC中,AB>AC,AD是中线,AE是高,求证:AB2-AC2=2BC•DE.
分析:由勾股定理可得出AB2=BE2+AE2,AC2=AE2+EC2,则AB2-AC2=BE2-EC2,由平方差公式可得出答案.
解答:解:∵AE是高,
∴△ABE和△ACE是直角三角形,
∴AB2=BE2+AE2,AC2=AE2+EC2
∴AB2-AC2=BE2-EC2
=(BE+CE)(BE-CE)
=BC(BD+DE-CE),
∵AD是中线,
∴AB2-AC2=BC(CD+DE-CE)
=BC(DE+DE)
=2BC•DE.
点评:本题考查了勾股定理以及三角形的角平分线、中线和高线,是基础知识要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网