题目内容
计算(3-1)(32+1)(34+1)(38+1)(316+1)= .
考点:平方差公式
专题:
分析:原式乘以
×(3+1),再依次运用平方差公式进行计算即可.
| 1 |
| 4 |
解答:解:原式=
(3+1)(3-1)(32+1)(34+1)(38+1)(316+1)
=
(32-1)(32+1)(34+1)(38+1)(316+1)
=
(34-1)(34+1)(38+1)(316+1)
=
(38-1)(38+1)(316+1)
=
(316-1)(316+1)
=
(332-1),
故答案为:
(332-1).
| 1 |
| 4 |
=
| 1 |
| 4 |
=
| 1 |
| 4 |
=
| 1 |
| 4 |
=
| 1 |
| 4 |
=
| 1 |
| 4 |
故答案为:
| 1 |
| 4 |
点评:本题考查了平方差公式的应用,注意:平方差公式为(a+b)(a-b)=a2-b2.
练习册系列答案
相关题目
下列各数:
,
π,
,
,0.451452453…,0,其中无理数的个数有( )
| 22 |
| 7 |
| 4 |
| 5 |
| 3 | 216 |
| 27 |
| A、2个 | B、3个 | C、4个 | D、5个 |