题目内容
下列算式中,结果等于的是()
A. B. C. D.
在平面直角坐标系中,规定:抛物线的伴随直线为.例如:抛物线的伴随直线为,即
(1)在上面规定下,抛物线的顶点为 .伴随直线为 ;抛物线与其伴随直线的交点坐标为 和 ;
(2)如图,顶点在第一象限的抛物线与其伴随直线相交于点 (点在点 的右侧)与 轴交于点
①若 求的值;
②如果点是直线上方抛物线的一个动点,的面积记为,当 取得最大值 时,求的值.
将抛物线先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )
如图,边长为的正六边形的中心与坐标原点重合,轴,将正六边形绕原点顺时针旋转次,每次旋转,当时,顶点的坐标为 .
在平面直接坐标系中,将一块含义角的直角三角板如图放置,直角顶点的坐标为,顶点的坐标为,顶点恰好落在第一象限的双曲线上,现将直角三角板沿轴正方向平移,当顶点恰好落在该双曲线上时停止运动,则此点的对应点的坐标为()
A. B. C. D.
如图,直线与反比例函数的图象相交于和两点.
(1)求的值;
(2)直线与直线相交于点,与反比例函数的图象相交于点.若,求的值;
(3)直接写出不等式的解集.
如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE的长为 .
某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第天(为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第(天)的利润为(元),求与()之间的函数关系式,并求出第几天时销售利润最大?
(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?
一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是( )
A.300° B.150° C.120° D.75°