ÌâÄ¿ÄÚÈÝ
ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=8£¬BC=6£¬µãQÔÚABÉÏÇÒAQ=2£¬¹ýµãQ×÷QR¡ÍAB´¹×ãΪQ£¬QR½»ÕÛÏßAC-CBÓÚR£¬µ±µãQÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÏòÖÕµãBÒÆ¶¯Ê±£¬µãPͬʱ´ÓµãA³ö·¢£¬ÒÔÿÃë3¸öµ¥Î»µÄËÙ¶ÈÑØAB-BC-CAÒÆ¶¯£®ÉèÒÆ£¨1£©µ±t=1Ãëʱ£¬RQ=
£¨2£©Éè¡÷ARQµÄÃæ»ýÊÇS£¬Çëд³öSÓëtµÄº¯Êý¹ØÏµÊ½£®
£¨3£©tΪºÎֵʱPQ¡ÎAC£¿
£¨4£©µ±tΪºÎֵʱ£¬Ö±ÏßQR¾¹ýµãP£¿
£¨5£©µ±µãPÔÚABÉÏÔ˶¯Ê±£¬ÒÔPQΪ±ßÔÚABÉÏ·½×÷Õý·½ÐΣ®ÈôÕý·½ÐÎPQMNÔÚRt¡÷ABCÄÚ²¿Ê±£¬Çë¼ÆËã³ö´ËʱtµÄȡֵ·¶Î§£®
·ÖÎö£º£¨1£©¸ù¾ÝÌâÒâµÃ¡÷AQR¡×¡÷ACB£¬ÓÉÏàËÆÈý½ÇÐεÄÐÔÖÊÇóµÃQR£¬ÔÙ¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½ÇóµÃÃæ»ý£»
£¨2£©·ÖÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£º¢Ùµ±RÔÚAC±ßÉÏ£¬ÓÉ¡÷ARQ¡×¡÷ABCµÃ£¬S=
t2+
t+
£»¢Úµ±RÔÚBC±ßÉÏ£¬S=-
t2+4t+
£®
£¨3£©µ±PQ¡ÎACʱ£¬ÓÉ¡÷BPQ¡×¡÷BCAµÃ³öt£»
£¨4£©·ÖÈýÖÖÇé¿öÌÖÂÛ¼´¿É£º¢Ùµ±Q£®P¾ùÔÚABÉÏʱ£»¢Úµ±PÔÚBCÉÏʱ£»¢Ûµ±PÔÚACÉϲ»´æÔÚQR¾¹ýµãP
£¨5£©ÓÐÁ½ÖÖÇé¿ö£ºµ±µãPÔÚµãQµÄ×ó²àʱ£¬ÈôµãNÂäÔÚACÉÏ£¬ÔòPQ=2+t-3t=2-2t£¬ÓÉ¡÷APN¡×¡÷ACBµÃ
=
£¬´Ó¶øµÃ³öt£»
µ±µãPÔÚµãQµÄÓÒ²àʱ£¬ÈôµãNÂäÔÚBCÉÏ£¬ÔòÓÉ¡÷BPN¡×¡÷BCAµÃ
=
£¬×ÛÉÏÁ½ÖÖÇé¿ö£¬¿ÉµÃ³ötµÄȡֵ·¶Î§£®
£¨2£©·ÖÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£º¢Ùµ±RÔÚAC±ßÉÏ£¬ÓÉ¡÷ARQ¡×¡÷ABCµÃ£¬S=
| 3 |
| 8 |
| 3 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 32 |
| 3 |
£¨3£©µ±PQ¡ÎACʱ£¬ÓÉ¡÷BPQ¡×¡÷BCAµÃ³öt£»
£¨4£©·ÖÈýÖÖÇé¿öÌÖÂÛ¼´¿É£º¢Ùµ±Q£®P¾ùÔÚABÉÏʱ£»¢Úµ±PÔÚBCÉÏʱ£»¢Ûµ±PÔÚACÉϲ»´æÔÚQR¾¹ýµãP
£¨5£©ÓÐÁ½ÖÖÇé¿ö£ºµ±µãPÔÚµãQµÄ×ó²àʱ£¬ÈôµãNÂäÔÚACÉÏ£¬ÔòPQ=2+t-3t=2-2t£¬ÓÉ¡÷APN¡×¡÷ACBµÃ
| PN |
| BC |
| AP |
| AC |
µ±µãPÔÚµãQµÄÓÒ²àʱ£¬ÈôµãNÂäÔÚBCÉÏ£¬ÔòÓÉ¡÷BPN¡×¡÷BCAµÃ
| BP |
| BC |
| PN |
| AC |
½â´ð£º
½â£º£¨1£©
£¬
£»£¨2·Ö£©
£¨2£©µ±RÔÚAC±ßÉÏ£¬
ÓÉ¡÷ARQ¡×¡÷ABCµÃ£¬
=
£¬RQ=
£¨2+t£©£¬
S=
£¨2+t£©¡Á
£¨2+t£©=
£¨2+t£©2=
t2+
t+
£¬
µ±RÔÚBC±ßÉÏ£¬RQ=
£¨8-t£©£¬S=-
t2+4t+
£»£¨5·Ö£©
£¨3£©µ±PQ¡ÎACʱ£¬BQ=10-£¨2+t£©=8-tBP=3t-10£¬
ÓÉ¡÷BPQ¡×¡÷BCAµÃ£º
=
£¬
½âµÃt=
£»£¨7·Ö£©
£¨4£©¢Ùµ±Q£®P¾ùÔÚABÉÏʱAP=3t£¬AQ=2+t£¬
AP=AQ¼´3t=2+t£¬
t=1£¬
¢Úµ±PÔÚBCÉÏʱ£¬
ÓÉ¡÷BPQ¡×¡÷BACµÃ
=
£¬
¼´£º
=
£¬
t=5s£¬
¢Ûµ±PÔÚACÉϲ»´æÔÚQR¾¹ýµãP£¬
×ÛÉϵ±t=1s»ò5sʱֱÏßQR¾¹ýµãP£»£¨10·Ö£©
£¨5£©µ±µãPÔÚµãQµÄ×ó²àʱ£¬ÈôµãNÂäÔÚACÉÏ£¬
¡ßAP=3t£¬Q=2+t£¬
¡àPQ=2+t-3t=2-2t£¬
¡ßËıßÐÎPQMNÊÇÕý·½ÐΣ¬
¡àPN=2-2t£¬
ÓÉ¡÷APN¡×¡÷ACBµÃ
=
£¬
¼´
=
£¬
½âµÃt=
£¬
µ±µãPÔÚµãQµÄÓÒ²àʱ£¬ÈôµãNÂäÔÚBCÉÏ£¬BP=10-3t£¬
PN=PQ=2t-2ÓÉ¡÷BPN¡×¡÷BCAµÃ
=
£¬
¼´
=
£¬
½âµÃt=
£¬
¡ßt=1ʱµãPÓëµãQÖØºÏ£®
¡à
¡Üt¡Ü
ÇÒt¡Ù1ʱÕý·½ÐÎPQMNÔÚRt¡÷ABCÄÚ²¿£®£¨12·Ö£©
| 9 |
| 4 |
| 27 |
| 8 |
£¨2£©µ±RÔÚAC±ßÉÏ£¬
ÓÉ¡÷ARQ¡×¡÷ABCµÃ£¬
| RQ |
| 6 |
| 2+t |
| 8 |
| 3 |
| 4 |
S=
| 1 |
| 2 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 8 |
| 3 |
| 2 |
| 3 |
| 2 |
µ±RÔÚBC±ßÉÏ£¬RQ=
| 4 |
| 3 |
| 2 |
| 3 |
| 32 |
| 3 |
£¨3£©µ±PQ¡ÎACʱ£¬BQ=10-£¨2+t£©=8-tBP=3t-10£¬
ÓÉ¡÷BPQ¡×¡÷BCAµÃ£º
| 8-t |
| 10 |
| 3t-10 |
| 6 |
½âµÃt=
| 74 |
| 18 |
£¨4£©¢Ùµ±Q£®P¾ùÔÚABÉÏʱAP=3t£¬AQ=2+t£¬
AP=AQ¼´3t=2+t£¬
t=1£¬
¢Úµ±PÔÚBCÉÏʱ£¬
ÓÉ¡÷BPQ¡×¡÷BACµÃ
| BP |
| AB |
| BQ |
| BC |
¼´£º
| 3t-10 |
| 10 |
| 8-t |
| 6 |
t=5s£¬
¢Ûµ±PÔÚACÉϲ»´æÔÚQR¾¹ýµãP£¬
×ÛÉϵ±t=1s»ò5sʱֱÏßQR¾¹ýµãP£»£¨10·Ö£©
£¨5£©µ±µãPÔÚµãQµÄ×ó²àʱ£¬ÈôµãNÂäÔÚACÉÏ£¬
¡ßAP=3t£¬Q=2+t£¬
¡àPQ=2+t-3t=2-2t£¬
¡ßËıßÐÎPQMNÊÇÕý·½ÐΣ¬
¡àPN=2-2t£¬
ÓÉ¡÷APN¡×¡÷ACBµÃ
| PN |
| BC |
| AP |
| AC |
¼´
| 2-2t |
| 6 |
| 3t |
| 8 |
½âµÃt=
| 8 |
| 17 |
µ±µãPÔÚµãQµÄÓÒ²àʱ£¬ÈôµãNÂäÔÚBCÉÏ£¬BP=10-3t£¬
PN=PQ=2t-2ÓÉ¡÷BPN¡×¡÷BCAµÃ
| BP |
| BC |
| PN |
| AC |
¼´
| 10-3t |
| 6 |
| 2t-2 |
| 8 |
½âµÃt=
| 23 |
| 9 |
¡ßt=1ʱµãPÓëµãQÖØºÏ£®
¡à
| 8 |
| 17 |
| 23 |
| 9 |
µãÆÀ£º±¾ÌâÊÇÒ»µÀ×ÛºÏÐÔ½ÏÇ¿µÄÌâÄ¿£¬¿¼²éÁËÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢¹´¹É¶¨ÀíÒÔ¼°Õý·½ÐεÄÐÔÖÊ£¬ÊÇÖп¼Ñ¹ÖáÌ⣬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
| A¡¢12 | B¡¢6 | C¡¢2 | D¡¢3 |
ÔÚRt¡÷ABCÖУ¬ÒÑÖªa¼°¡ÏA£¬Ôòб±ßӦΪ£¨¡¡¡¡£©
| A¡¢asinA | ||
B¡¢
| ||
| C¡¢acosA | ||
D¡¢
|
| A¡¢9£º4 | B¡¢9£º2 | C¡¢3£º4 | D¡¢3£º2 |