题目内容

如果一个多边形的每一个内角都等于144°,那么它的内角和为


  1. A.
    1260°
  2. B.
    1440°
  3. C.
    1620°
  4. D.
    1800°
B
分析:多边形的每一个内角都等于144°,则每个外角是180-144=36度.外角和是360度,则可以求得这个多边形的边数,再根据边数即可求得内角和.
解答:这个多边形的边数是360°÷(180°-144°)=360°÷36°=10,
则内角和是(10-2)×180°=1440°;
故本题选B.
点评:本题主要考查了多边形的外角和定理和内角和公式,已知正多边形的外角求正多边形的边数是一个考试中经常出现的问题.
练习册系列答案
相关题目
27、我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1是由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
(1)图1中标出的是一种可能的复制结果,它用到
1
次平移,
2
次旋转.小明发现△B∽△A,其相似比为
2:1
.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有
121
个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是
正三边形、正六边形

(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;
(4)图3是正五边形EFGHI,其中心是O,连接O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网