题目内容
【题目】如图,已知直线y=
x与反比例函数y=
的图象交于A,B两点,且点A的横坐标为
.在坐标轴上找一点C,直线AB上找一点D,在双曲线y=
找一点E,若以O,C,D,E为顶点的四边形是有一组对角为60的菱形,那么符合条件点D的坐标为___.
![]()
【答案】(3,3
)或(3,3
).
【解析】
把A的横坐标代入直线解析式求出y的值,确定出A坐标,把A坐标代入反比例解析式求出k的值,确定出反比例解析式,设D(a,
a),由直线AB解析式可知,直线AB与y轴正半轴夹角为60°,以O、C、D、E为顶点的四边形是有一组对角为60°的菱形,D在直线y=
x上,得到点C只能在y轴上,得出E横坐标为a,把x=a代入反比例函数解析式求出y的值,确定出E坐标,由菱形的边长相等得到OD=ED,进而求出a的值,确定出满足题意D的坐标即可.
把x=
代入y=
x,得:y=3,即A(
,3),
![]()
把点A(
,3)代入y=kx,解得:k=3
,
∴反比例函数解析式为y=
,
设D点坐标(a,
a),由直线AB解析式可知,直线AB与y轴正半轴夹角为60,
∵以O、C. D.E为顶点的四边形是有一组对角为60的菱形,D在直线y=
x上,
∴点C只能在y轴上,
∴E点的横坐标为a,
把x=a代入y=
,得:y=
,即E(a,
,
根据OE=ED,即:
,
解得:a=±3,
则满足题意D为(3,3
)或(3,3
).
故答案为:(3,3
)或(3,3
).
【题目】为了传承优秀传统文化,某校组织800名学生参加了一次“汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:
90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,83,100,73,76,80,77,81,86,75,82,85,71,68,74,98,90,97,85,84,78,73,65,92,96,60
对上述成绩进行了整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
60≤x<70 | 6 | 0.15 |
70≤x<80 | a | b |
80≤x<90 | 14 | 0.35 |
90≤x≤100 | c | d |
请根据所给信息,解答下列问题:
(1)a= ,d= .
(2)请补全频数分布直方图
(3)若成绩在90分以上(包括90分)的为“优等,请你估计参加这次比赛的800名学生中成绩“优”等的约有多少人?
![]()