题目内容
在同一直角坐标系中作出函数y=3x2,y=3(x-1)2和y=3(x+2)2的图象,然后根据图象填空:
抛物线y=3x2的顶点坐标是( ),对称轴是________,开口向________;
抛物线y=3(x-1)2的顶点坐标是( ),对称轴是________,开口向________;
抛物线x=3(x+2)2的顶点坐标是( ),对称轴是________,开口向________.
可以发现,抛物线y=3(x-1)2,y=3(x+2)2与抛物线y=3x2的形状、开口大小相同,只是抛物线的位置和对称轴发生了变化.把抛物线y=3x2沿x轴向________平移________个单位即可得到抛物线y=3(x-1)2;把抛物线y=3x2沿x轴向________平移________个单位即可得到抛物线y=3(x+2)2.
答案:
解析:
解析:
|
(0,0),y轴,上,(1,0),直线x=1,上,(-2,0),直线x=-2,上,右,1,左,2 |
练习册系列答案
相关题目