题目内容

精英家教网在△ABC中,AB=BC,点O是△ABC的外心,连接AO并延长交BC于D,交△ABC的外接圆于E,过点B作⊙O的切线交AO的延长线于Q,设OQ=
9
2
,BQ=3
2

(1)求⊙O的半径;
(2)若DE=
3
5
,求四边形ACEB的周长.
分析:(1)连接OB,根据BQ是圆的切线,则△OBQ是直角三角形,根据勾股定理即可求得半径OB的长;
(2)根据AB=BC,O是△ABC的外心,可以得到:BC⊥AC,且AE是直径,BE=CE.易证△BOD∽△CED,根据相似三角形的对应边的比相等,即可求得CE的长,在Rt△ACE中根据勾股定理求得AC的长,在Rt△ABE中求得BE的长,据此即可求得四边形的周长.
解答:精英家教网解:(1)连接OB.
∵BQ与⊙O相切,
∴∠OBQ=90°
∴OB=
OQ2-BQ2
=
(
9
2
)2-(3
2
)2
=
3
2

故半径是:
3
2


(2)连接BO并延长交AC于点F,
∵AB=BC则
AB
=
BC

∴BF⊥AC,
又∵AE是⊙O的直径,
∴∠ACE=∠ABE=90°,
∴BF∥CE,
∴△BOD∽△CED,
BO
CE
=
OD
DE

∴CE=
DE•BO
OD
=
3
5
×
3
2
3
2
-
3
5
=1,
∴在Rt△ACE中,AE=3,CE=1,则AC=2
2

又O是AE的中点,∴OF=
1
2
CE=
1
2

则BF=2.
∴在Rt△ABE中,BE=
3

∴四边形ACEB的周长是:1+2
2
+
6
+
3
点评:本题主要考查了切线的性质定理,以及勾股定理,并多次运用了勾股定理,其中根据AB=AC和O是△ABC的内心,得到BF⊥AC,且AE是直径,是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网