题目内容
如图,在ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.
在平面直角坐标系中,点P(3,﹣2)关于y轴的对称点是_________,关于原点的对称点是__________.
已知抛物线y=ax2+bx+3的对称轴是直线x=1.
(1)求证:2a+b=0;
(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.
把抛物线向右平移3个单位,再向下平移2个单位,得到抛物线( ).
A. B. C. D.
如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.
(1)求证:Rt△ADE与Rt△BEC全等;
(2)求证:△CDE是直角三角形.
某正n边形的一个内角为108°,则n= .
若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( )
A. 矩形
B. 菱形
C. 对角线互相垂直的四边形
D. 对角线相等的四边形
已知方程组的解满足x+y=3,则k的值为__________.
如图,已知直线AB//CD,直线EF和直线AB,CD分别交于点B和点D,在直线 EF 上有一动点P.
(1).P点在线段BD上(点P 与点B,D不重合),请证明 :∠PAB+∠PCD=∠APC;
(2).若点P不在线段BD 上,请写出∠PAB, ∠PCD, ∠APC之间的数量关系,并画出相关图形,说明理由.