题目内容
在这四个数中,最大的数是( )
A. B. C. D.
(9分)如图,已知∠AOB是直角,∠BOC=600, OE平分∠AOC,OF平分∠BOC.
(1)求∠EOF的度数;
(2)若将条件“∠AOB是直角,∠BOC=600”改为: ∠AOB= x0,∠EOF=y0,条件不变.
①则请用x的代数式来表示y.
②如果∠AOB+∠EOF=1560.则∠EOF是多少度?
分解因式:x3-6x2+9x= .
“植树节”时,九年级一班6个小组的植树棵树分别是:5,7,3,x,6,4,已知这组数据的众数是5,则该组数据的平均数是 .
不等式组的所有整数解的和是( )
A.2 B.3 C.5 D.6
为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.
(1)y与x的函数关系式为: ;
(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.
如图,直线a∥b,∠1=110°,∠2=55°,则∠3的度数为 .
(9分)为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:
(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;
(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
【问题探究】
(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.
【深入探究】
(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45º,求BD的长.
(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.