题目内容
圆锥的底面半径为,母线长为,则它的侧面积为( )
A. B. C. D.
如图,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是 cm2.
若关于的一元二次方程无实数根,则一次函数的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
对正方形ABCD进行分割,如图1,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分化线可以剪出一副“七巧板”,用这些部件可以拼出很多图案,图2就是用其中6块拼出的“飞机”.若△GOM的面积为1,则“飞机”的面积为 .
设一元二次方程(x﹣1)(x﹣2)=m(m>0)的两实根分别为α,β,且α<β,则α,β满足( )
A.1<α<β<2 B.1<α<2<β
C.α<1<β<2 D.α<1且β>2
(本题满分10分)
【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.
【初步体验】
(1)如图①,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FG∥BC.若AD=2,AE=1,DF=6,则EG= , FB:GC = .
(2)如图②,在△ABC中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).
求证:∠M=∠N.
【深入探究】
上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:
(3)如图③,已知△ABC和线段a,请用直尺与圆规作△A′B′C′,满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)
(本题满分8分)(1)解方程:;
(2)解不等式组.
若双曲线过点(2,6),则该双曲线一定过点( )
A.(―3,―4) B.(4,―3) C.(―6,2) D.(4,4)
在括号内填入适当的整式,使等式成立:
= ;