题目内容
计算:
(1)﹣14+16÷(﹣2)3×|﹣3﹣1|.
(2)
下列图形中:①等腰三角形;②矩形;③正五边形;④六边形,只有三个是可以通过切正方体(如图)而得到的切口平面图形,这三个图形的序号是________.
如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.
如图,在Rt△OBC中,OC=1,OB=2,数轴上点A所表示的数为a,则a的值是( )
A. --2 B. - C. ﹣2 D. ﹣+2
阅读材料,数学家高斯在上学时曾经研究过这样一个问题,1+2+3+…+10=?经过研究,这个问题的一般性结论是1+2+3+…+n=n(n+1),其中n为正整数,现在我们来研究一个类似的问题:1×2+2×3+…+ n(n+1)=?
观察下面三个特殊的等式:
1×2=(1×2×3-0×1×2)
2×3=(2×3×4-1×2×3)
3×4=(3×4×5-2×3×4)
将这三个等式的两边相加,可以得到1×2+2×3+3×4=×3×4×5=20.
读完这段材料,请你计算:
(1)1×2+2×3+…+100×101;
(2)1×2+2×3+…+ n(n+1);
如果、互为倒数, 、互为相反数,且,则代数式_______.
下列运算正确的是 ( ).
A. B. -7-2×5=-9×5=-45
C. D. -5÷+ 7=-10 + 7 = -3
两个等腰直角三角板如图放置,点F为BC的中点,AG=1,BG=3,则CH的长为__________.
如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).