题目内容

精英家教网如图,把一个直角三角形ABC绕着30°角的顶点B顺时针旋转,使点A与CB的延长线上的点E重合,这时∠BDC的度数是(  )
A、10°B、15°C、20°D、30°
分析:根据旋转的性质得到∠DBE=∠ABC=30°,BD=BC,则∠BCD=∠BDC,再由三角形的外角性质得到∠DBE=∠BCD+∠BDC,即有∠BDC=
1
2
∠DBE.
解答:解:∵△BDE是由△BAC绕着30°角的顶点B顺时针旋转得到,
∴∠DBE=∠ABC=30°,BD=BC,
∴∠BCD=∠BDC,
而∠DBE=∠BCD+∠BDC,
∴∠BDC=
1
2
∠DBE=15°.
故选B.
点评:本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰三角形的性质以及三角形的外角性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网