题目内容
(1)用配方法解方程:2y2-4y=2;
(2)解方程:2(x-1)2-5(x-1)+2=0.
(2)解方程:2(x-1)2-5(x-1)+2=0.
分析:(1)利用配方法解方程.配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.
(2)分解因式得到(x-1-2)[2(x-1)-1]=0,推出方程(x-3)=0或(2x-3)=0,求出方程的解即可.
(2)分解因式得到(x-1-2)[2(x-1)-1]=0,推出方程(x-3)=0或(2x-3)=0,求出方程的解即可.
解答:解:(1)2y2-4y=2,
2y2-4y-2=0,
y2-2y-1=0,
(y-1)2-2=0,
(y-1)2=2,
y-1=±
,
解得:y1=
+1,y2=-
+1;
(2)2(x-1)2-5(x-1)+2=0,
(x-1-2)[2(x-1)-1]=0,
故(x-3)=0或(2x-3)=0,
解得:x1=3,x2=
.
2y2-4y-2=0,
y2-2y-1=0,
(y-1)2-2=0,
(y-1)2=2,
y-1=±
| 2 |
解得:y1=
| 2 |
| 2 |
(2)2(x-1)2-5(x-1)+2=0,
(x-1-2)[2(x-1)-1]=0,
故(x-3)=0或(2x-3)=0,
解得:x1=3,x2=
| 3 |
| 2 |
点评:此题考查了配方法和因式分解法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
练习册系列答案
相关题目
用配方法解方程3x2-6x+1=0,则方程可变形为( )
A、(x-3)2=
| ||
B、3(x-1)2=
| ||
| C、(3x-1)2=1 | ||
D、(x-1)2=
|