题目内容
“节约光荣,浪费可耻”,据统计我国每年浪费粮食约8000000吨,这个数据用科学记数法可表示为_____吨.
如图,AB是⊙O直径,点C,D在⊙O上,OD∥AC,下列结论错误的是( )
A. ∠BOD=∠BAC B. ∠BAD=∠CAD C. ∠C=∠D D. ∠BOD=∠COD
如图,在平面直角坐标系中,点A的坐标为(2.5,1),连接OA并延长至点B,使OA=AB,则点B的坐标是_____
如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.
(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2
(2)化简:.
不等式组的解集是( )
A.x>-1 B.-1<x<2 C.x<2 D.x<-1或x>2
如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).
(1)请直接写出B、C两点的坐标及抛物线的解析式;
(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?
(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.
不等式组无解,则的取值范围是( )
A. B. C. D.
已知: 如图, 点B, F, C, E在一条直线上, BF = CE, AC = DF, 且AC∥DF.
求证: ∠B = ∠E.