题目内容

如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为 5 

考点:

轴对称-最短路线问题;正方形的性质.

分析:

要求DQ+PQ的最小值,DQ,PQ不能直接求,可考虑通过作辅助线转化DQ,PQ的值,从而找出其最小值求解.

解答:

解:如图,连接BP,

∵点B和点D关于直线AC对称,

∴QB=QD,

则BP就是DQ+PQ的最小值,

∵正方形ABCD的边长是4,DP=1,

∴CP=3,

∴BP==5,

∴DQ+PQ的最小值是5.

故答案为:5.

点评:

此题考查了正方形的性质和轴对称及勾股定理等知识的综合应用,得出DQ+PQ的最小时Q点位置是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网