题目内容

抛物线y=x2+bx+c与x轴的正半轴交于A,B两点,与y轴交于C点,且线段AB的长为1,△ABC的面积为1,则b的值为________.

-3
分析:设A,B,C三点的坐标分别为(x1,0)、(x2,0)、(0,c),再由线段AB的长为1,△ABC的面积为1可求出c的值,再由根与系数的关系及线段AB的长度列出方程组即可求出b的值.
解答:设A,B,C三点的坐标分别为(x1,0)、(x2,0)、(0,c),且x1<x2
∵抛物线y=x2+bx+c与x轴的正半轴交于A,B两点,线段AB的长为1,
∴x2-x1=1,
∵△ABC的面积为1,即(x2-x1)•|c|=1,
∴c=±2,
∵x1>0、x2>0,
∴x1•x2,>0,
∵x1•x2=c,
∴c=2,

解得b=±3,
∵x1>0、x2>0,
∴x1+x2>0,
∵x1+x2=-b,
∴b<0,
∴b=-3.
故答案为:-3.
点评:本题考查的是抛物线与x轴的交点及根与系数的关系、三角形的面积公式,在解答此类题目时要注意判断未知数的正负,这是此类题目的易错点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网