题目内容

作业宝如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.
(1)求证:AE=AF;  
(2)求证:CD=2BE+DE.

证明:(1)如图,∵∠BAC=90°,AF⊥AE,
∴∠EAB+∠BAF=∠BAF+∠FAC=90°,
∴∠EAB=∠FAC,
∵BE⊥CD,
∴∠BEC=90°,
∴∠EBD+∠EDB=∠ADC+∠ACD=90°,
∵∠EDB=∠ADC,
∴∠EBA=∠ACF,
∴在△AEB与△AFC中,
∴△AEB≌△AFC(SAS)
∴AE=AF;
                    
(2)如图,过点A作AG⊥EC,垂足为G.
∵AG⊥EC,BE⊥CD,
∴∠BED=∠AGD=90°,
∵点是AB的中点,
∴BD=AD.
∴在△BED与△AGD中,
∴△BED≌△AGD(AAS),
∴ED=GD,BE=AG,
∵AE=AF
∴∠AEF=∠AFE=45°
∴∠FAG=45°
∴∠GAF=∠GFA,
∴GA=GF,
∴CF=BE=AG=GF,
∵CD=DG+GF+FC,
∴CD=DE+BE+BE,
∴CD=2BE+DE.
分析:(1)通过证△AEB≌△AFC(SAS),得到AE=AF;
(2)如图,过点A作AG⊥EC,垂足为G,通过证△BED≌△AGD(AAS),得到ED=GD,BE=AG,易证CF=BE=AG=GF.因为CD=DG+GF+FC,所以CD=DE+BE+BE,故
CD=2BE+DE.
点评:本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网