题目内容
如图,在的网格图中(每个小正方形的边长均为1个单位),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B相切,那么⊙A由图示位置需向右平移 个单位。
若关于x的不等式-3x+n>0的解集是x<2,则关于x的不等式-3x+n<0的解集是________
阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<7<3,即2<<3,∴的整数部分为2,小数部分为﹣2.
请解答:
(1) 的整数部分是 ,小数部分是 .
(2)如果的小数部分为a, 的整数部分为b,求a+b-的值;
(3)已知:x是3+的整数部分,y是其小数部分,请直接写出x﹣y的值的相反数.
在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是( )
A. 平行 B. 垂直 C. 平行或垂直 D. 无法确定
如图,⊙O经过点C,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC,交DC的延长线于点E,且AC平分∠EAB。
求证:DE是⊙O的切线;
如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α的度数是( )
A. 52° B. 60° C. 72° D. 76°
如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .
有一个数值转换器,原理如下:
当输入的x=64时,输出的y等于( )
A. 2 B. 8 C. D.
如图,A,B,C,D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED=4,则AB的长为( )
A. 3 B. 2 C. D. 3