题目内容
在△ABC中,∠A、∠B、∠C的度数之比为3:4:5,那么△ABC是
- A.锐角三角形
- B.直角三角形
- C.钝角三角形
- D.等腰三角形
A
分析:已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.
解答:设一份为k°,则三个内角的度数分别为3k°,4k°,5k°.
则3k°+4k°+5k°=180°,
解得k°=15°,
∴5k°=75°,3k°=45°,4k°=60°,
所以这个三角形是锐角三角形,
故选A.
点评:此题主要考查三角形的按边分类,直接根据三角形三个内角的度数比来判断是解题的关键.
分析:已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.
解答:设一份为k°,则三个内角的度数分别为3k°,4k°,5k°.
则3k°+4k°+5k°=180°,
解得k°=15°,
∴5k°=75°,3k°=45°,4k°=60°,
所以这个三角形是锐角三角形,
故选A.
点评:此题主要考查三角形的按边分类,直接根据三角形三个内角的度数比来判断是解题的关键.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
| 2 |
| 6 |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、以上都不对 |