题目内容
如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
A. 6 B. 7 C. 8 D. 9
下列不等式(组)解应用题:
2017年的5月20日是第17个中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如表).
若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?
的相反数是____________.
如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上. 若BF=3,则小正方形的边长为
A. B. C. 5 D. 6
如图,在菱形ABCD中,∠A=60°,E,F分别是AB,AD的中点,DE,BF相交于点G,连接BD,CG,有下列结论:①∠BGD=120° ;②BG+DG=CG;③△BDF≌△CGB;④ .其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
定义:A={b,c,a},B={c},A∪B={a,b,c},若 M={﹣1},N={0,1,﹣1},则 M∪N={______}.
实数, ,0,﹣π, , ,0.1010010001…(相连两个1之间依次多一个 0),其中无理数有( )个.
A. 1 B. 2 C. 3 D. 4
计算(﹣3)+(﹣9)的结果为______.
把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,……如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:
,
所以32和70都是“快乐数”.
(1)最小的两位“快乐数”是 ;
(2)证明19是“快乐数”;
(3)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数” .