题目内容
甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是=0.65,=0.55,=0.50,则射箭成绩最稳定的是______________.
如果点A(x1,y1)和点B(x2,y2)是直线y=﹣kx+b上的两点,且当x1<x2时,y1<y2,那么函数y=的图象位于象限( )
A. 一、四 B. 二、四 C. 三、四 D. 一、三
如图,AB是⊙O直径,CD切⊙O于E,BC⊥CD,AD⊥CD交⊙O于F,∠A=60°,AB=4,则阴影部分面积_______.
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打笫一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
如图,在平面直角坐标系中,与轴相切于原点,平行于轴的直线交于、两点,若点的坐标是,则弦M的长为 .
某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是( ).
A. 4 B. 5 C. 6 D. 10
(2017贵州省遵义市)如图,抛物线(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为.
(1)求该抛物线的函数关系式与C点坐标;
(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?
(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);
①探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;
②试求出此旋转过程中,(NA+NB)的最小值.
一次函数与反比例函数,其中为常数,它们在同一坐标
系中的图像可以是( )
A. B. C. D.
在4张完全相同的卡片上分别画有等边三角形、平行四边形、正方形和圆,从中随机摸出两张,这两张卡片上的图形都是中心对称图形的概率是_____.