题目内容

如图,在△ABC中,∠A=90°,AB=AC,直线l经过点A,BE⊥l于E,CF⊥l于F,
求证:BE+CF=EF.

证明:∵BE⊥l,CF⊥l,
∴∠AEB=∠CFA=90°.
∴∠EAB+∠EBA=90°.
又∵∠BAC=90°,
∴∠EAB+∠CAF=90°.
∴∠EBA=∠CAF.
在△AEB和△CFA中:
∵∠AEB=∠CFA,∠EBA=∠CAF,AB=AC,
∴△AEB≌△CFA,
∴AE=CF,BE=AF,
∴EF=AF+AE=CF+BE.
分析:首先根据题意寻找可以证明△AEB≌△CFA的条件,再利用全等三角形的性质可以得到AE=CF,BE=AF,进而得到EF=AF+AE=CF+BE.
点评:此题主要考查了三角形全等的判定及性质,解决问题的关键是证明△AEB≌△CFA.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网