题目内容
如果x+3y+2=0,求3x•27y的值.
如图,已知AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于点D,E是AB上一点,直线CE与⊙O交于点F,连结AF,与直线CD交于点G.
求证:(1)∠ACD=∠F; (2)AC2=AG·AF.
如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A. 60° B. 50° C. 40° D. 30°
一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是( )
A. 27 B. 35 C. 44 D. 54
下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( )
A. 3cm,4cm,8cm B. 8cm,7cm,15cm
C. 5cm,5cm,11cm D. 13cm,12cm,20cm
计算25m÷5m的结果为( )
A. 5 B. 5m C. 20 D. 20m
具备下列条件的△ABC中,不是直角三角形的是( )
A. ∠A+∠B=∠C B. ∠A-∠B=∠C
C. ∠A︰∠B︰∠C =1︰2︰3 D. ∠A=∠B=3∠C
(1)解不等式≤-1;
(2)求(1)中不等式的正整数解.
如图,二次函数y=x2-4x+3的图象与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.
(1)求点A,点B和点D的坐标;
(2)在y轴上是否存在一点P,使∆PBC为等腰三角形?若存在,请求出点P的坐标;
(3)若动点M从点A出发,以每秒1个单位长度的速度沿AB向点B运动,同时另一个动点N从点D出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M到达点B时,点M,N同时停止运动,问点M,N运动到何处时,∆MNB的面积最大,试求出最大面积.
(备用图)