题目内容

 已知:如图,正方形纸片ABCD的边长是4,点M、N分别在两边AB和CD上(其中点N不与点C重合),沿直线MN折叠该纸片,点B恰好落在AD边上点E处.

1.(1)设AE=x,四边形AMND的面积为 S,求 S关于x 的函数解析式,并指明该函数的定义域;

2.(2)当AM为何值时,四边形AMND的面积最大?最大值是多少?

3.(3)点M能是AB边上任意一点吗?请求出AM的取值范围.  

 

【答案】

 

1.⑴依题意,点B和E关于MN对称,则ME=MB=4-AM.

再由AM2+AE2=ME2=(4-AM)2,得AM=2-.            ……………………1分

作MF⊥DN于F,则MF=AB,且∠BMF=90°.

∵MN⊥BE,∴∠ABE= 90°-∠BMN.

又∵∠FMN =∠BMF -∠BMN=90°-∠BMN,

∴∠FMN=∠ABE.

∴Rt△FMN≌Rt△ABE.

∴FN=AE=x,DN=DF+FN=AM+x=2-+x.            ………………………2分

∴S=(AM+DN)×AD

=(2-+)×4

= -+2x+8.                                ……………………………3分

其中,0≤x<4.  

2.⑵∵S= -+2x+8= -(x-2)2+10,

  ∴当x=2时,S最大=10;             …………………………………………5分

此时,AM=2-×22=1.5              ………………………………………6分

答:当AM=1.5时,四边形AMND的面积最大,为10

3.⑶不能,0<AM≤2.

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网