题目内容
已知在△ABC中,AB=3,AC=2,D在边AB上,∠ACD=∠B,∠BAC的平分线交CD于P、交BC于Q,则
【答案】分析:根据角平分线的定义得∠BAQ=∠CAP,而∠ACD=∠B,根据相似三角形的判定得到△ABQ∽△ACP,由相似三角形的性质得到
,把AB=3,AC=2代入即可得到答案.
解答:解:∵AQ平分∠BAC,
∴∠BAQ=∠CAP,
而∠ACD=∠B,
∴△ABQ∽△ACP,
∴
,
又∵AB=3,AC=2,
∴
=
.
故答案为
.
点评:本题考查了相似三角形的判定与性质:如果两个三角形有两组角对应相等,那么这两个三角形相似;相似三角形的对应边的比相等.也考查了角平分线的定义.
解答:解:∵AQ平分∠BAC,
∴∠BAQ=∠CAP,
而∠ACD=∠B,
∴△ABQ∽△ACP,
∴
又∵AB=3,AC=2,
∴
故答案为
点评:本题考查了相似三角形的判定与性质:如果两个三角形有两组角对应相等,那么这两个三角形相似;相似三角形的对应边的比相等.也考查了角平分线的定义.
练习册系列答案
相关题目