题目内容

(2013•和平区二模)已知△ABC中,AB=AC,∠BAC=120°,在BC上取一点O,以O为圆心、OB为半径作圆,且⊙O过A点.
(Ⅰ)如图①,若⊙O的半径为5,求线段OC的长;
(Ⅱ)如图②,过点A作AD∥BC交⊙O于点D,连接BD,求
BDAC
的值.
分析:(1)求出∠B=∠C=30°,求出∠AOC=60°,求出∠OAC=90°,得出OC=2OA即可.
(2)根据勾股定理求出AC,求出△BOD是等边三角形,求出AC=
3
BD,即可求出答案.
解答:解:(1)∵△ABC中,AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵OA=OB,
∴∠BAO=∠B=30°,
∴∠AOC=30°+30°=60°,
∴∠OAC=90°,
∵OA=5,
∴OC=2AO=10.

(2)连接OD,
∵∠AOC=60°,AD∥BC,
∴∠DAO=∠AOC=60°,
∵OD=OA,
∴∠ADO=60°,
∴∠DOB=∠ADO=60°,
∵OD=OB,
∴△DOB是等边三角形,
∴BD=OB=OA,
在Rt△OAC中,OC=2BD,由勾股定理得:AC=
3
BD,
BD
AC
=
3
3
点评:本题考查了等边三角形的性质和判定,勾股定理和含30度角的直角三角形性质的应用,主要考查学生的推理能力和计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网