题目内容
如图所示,在△ABC中,∠C=90°,
AD是 ∠BAC的平分线,DE⊥AB交AB于E,
F在AC上,BD=DF.
证明:(1)CF=EB.(2)AB=AF+2EB.
![]()
分析:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB.
(2)利用角平分线性质证明△ADC≌△ADE,∴ AC=AE,再将线段AB进行转化.
证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.
又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),
∴ CF=EB.
(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴ △ADC≌△ADE,∴ AC=AE,
∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
练习册系列答案
相关题目