题目内容
已知抛物线y=ax2+bx+c(a≠0)经过A(-2,-3)、B(3,2)两点,且与x轴相交于M、N两点,当以线段MN为直径的圆的面积最小时,求M、N两点的坐标和四边形AMBN的面积.
∴MN=丨x1-x2丨=|
当a=-1时,MN最小=2
此时,b=2,c=5,
∴函数的解析式为:y=-x2+2x+5.
∴M(1-
此时,四边形AMBN的面积S=
分析:将点A、B的坐标分别代入已知函数解析式,即可求得以a表示的b、c的值;然后由两点间的距离公式求得MN=
当a=-1时,MN最小=2
点评:本题考查了二次函数综合题.其中涉及到的知识点有:待定系数法求二次函数的解析式,根与系数的关系与代数式的变形,二次函数最值的求法以及三角形面积的计算.在求四边形AMBN的面积时,采用了“分割法”.
练习册系列答案
相关题目