题目内容

如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP= 12 

考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.

分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.

解答:解:如图,延长BQ交射线EF于M,

∵E、F分别是AB、AC的中点,

∴EF∥BC,

∴∠M=∠CBM,

∵BQ是∠CBP的平分线,

∴∠PBM=∠CBM,

∴∠M=∠PBM,

∴BP=PM,

∴EP+BP=EP+PM=EM,

∵CQ=CE,

∴EQ=2CQ,

由EF∥BC得,△MEQ∽△BCQ,

==2,

∴EM=2BC=2×6=12,

即EP+BP=12.

故答案为:12.

点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点. 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网