题目内容
(1)在图中作出△OA1B1,并直接写出A1,B1的坐标;
(2)求点B旋转到点B1所经过的路线长(结果保留π);
(3)将扇形OBB1做成一个圆锥的侧面,求此圆锥的高.
考点:作图-旋转变换,弧长的计算,圆锥的计算
专题:作图题
分析:(1)分别找到O、A、B旋转后的对应点,顺次连接可得△OA1B1,结合直角坐标系可得A1,B1的坐标;
(2)在Rt△OAB中求出OB,再由旋转角度为90°,代入弧长公式进行运算即可;
(3)根据弧BB1的长度,可得圆锥的底面圆周长,继而求出底面圆半径,利用勾股定理可求出圆锥的高.
(2)在Rt△OAB中求出OB,再由旋转角度为90°,代入弧长公式进行运算即可;
(3)根据弧BB1的长度,可得圆锥的底面圆周长,继而求出底面圆半径,利用勾股定理可求出圆锥的高.
解答:解:所作图形如下:
.
(2)在Rt△OBA中,OB=
=2
,
则l=
=
π.
(3)圆锥的底面周长=
π,
则地面圆半径R=
,
又∵母线OB=2
,
∴此圆锥的高=
=
.
(2)在Rt△OBA中,OB=
| OA2+AB2 |
| 5 |
则l=
90π×2
| ||
| 180 |
| 5 |
(3)圆锥的底面周长=
| 5 |
则地面圆半径R=
| ||
| 2 |
又∵母线OB=2
| 5 |
∴此圆锥的高=
| OB2-R2 |
5
| ||
| 2 |
点评:本题考查了旋转作图、弧长的计算及圆锥的知识,解答本题需要同学们掌握弧长的计算公式,圆锥的母线、底面圆半径与圆锥高的关系.
练习册系列答案
相关题目
在△ABC中,D是AC的中点,E,F分别是BC的三等分点,AE,AF分别交BD于M,N两点,则BM:MN:ND等于( )
| A、3:2:1 |
| B、4:2:1 |
| C、5:2:1 |
| D、5:3:2 |
若不等式ax>b中a<0,则不等式解集为( )
A、x>
| ||
B、x<
| ||
C、x>-
| ||
D、x<-
|