题目内容
【题目】如图,△ABC是⊙O的内接三角形,点D,E在⊙O上,连接AE,DE,CD,BE,CE,∠EAC+∠BAE=180°,
.
(1)判断BE与CE之间的数量关系,并说明理由;
(2)求证:△ABE≌△DCE;
(3)若∠EAC=60°,BC=8,求⊙O的半径.
![]()
【答案】(1)BE=CE,理由见解析;(2)证明见解析;(3)
.
【解析】分析:(1)由A、B、C、E四点共圆的性质得:∠BCE+∠BAE=180°,则∠BCE=∠EAC,所以
,则弦相等;(2)根据SSS证明△ABE≌△DCE;
(3)作BC和BE两弦的弦心距,证明Rt△GBO≌Rt△HBO(HL),则∠OBH=30°,设OH=x,则OB=2x,根据勾股定理列方程求出x的值,可得半径的长.
本题解析:
(1)解:BE=CE,
理由:∵∠EAC+∠BAE=180°,∠BCE+∠BAE=180°,
∴∠BCE=∠EAC,
∴
,
∴BE=CE;
(2)证明:∵
,∴AB=CD,
∵
,
,∴AE=ED,
由(1)得:BE=CE,
在△ABE和△DCE中,
∵
,
∴△ABE≌△DCE(SSS);
(3)解:如图,∵过O作OG⊥BE于G,OH⊥BC于H,
∴BH=
BC=
×8=4,BG=
BE,
∵BE=CE,∠EBC=∠EAC=60°,
∴△BEC是等边三角形,∴BE=BC,∴BH=BG,
∵OB=OB,∴Rt△GBO≌Rt△HBO(HL),
∴∠OBH=∠GBO=
∠EBC=30°,
设OH=x,则OB=2x,
由勾股定理得:(2x)2=x2+42,x=
,
∴OB=2x=
,∴⊙O的半径为
.
![]()
练习册系列答案
相关题目