题目内容

如图,点A是反比例函数数学公式在第二象限内图象上一点,点B是反比例函数数学公式在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,则△AOB的面积是


  1. A.
    2
  2. B.
    2.5
  3. C.
    3
  4. D.
    3.5
C
分析:分别过A、B两点作x轴的垂线,构成直角梯形,根据AC=BC,判断OC为直角梯形的中位线,得出OD=OE=a,根据双曲线解析式确定A、B两点的坐标及AD、BE的长,根据S△AOB=S梯形ADBE-S△AOD-S△BOE求解.
解答:分别过A、B两点作AD⊥x轴,BE⊥x轴,垂足为D、E,
∵AC=CB,
∴OD=OE,
设A(-a,),则B(a,),
故S△AOB=S梯形ADBE-S△AOD-S△BOE=+)×2a--=3.
故选C.
点评:本题考查了反比例函数的综合运用,关键是作辅助线构造直角梯形,根据AC=BC,得出OC为直角梯形的中位线,利用面积的和差关系求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网