题目内容

如图,正方形ABCD的边长为8,点E、F分别在AB、BC上,AE=3,CF=1,P是对角线AC上的个动点,则PE+PF的最小值是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:过E作AC的垂线交AD于点E′,连接E′F交AC于点P,过F作AD的垂线交AD于点G,则E′F即为所求,根据正方形的性质可知△AEE′是等腰三角形,AE′=3,GD=CF=2,由AD=8即可求出GE′的长,再由勾股定理即可求出E′F的长.
解答:解:过E作AC的垂线交AD于点E′,连接E′F交AC于点P,过F作AD的垂线交AD于点G,则E′F即为所求,
∵四边形ABCD是正方形,
∴∠DAC=∠BAC=45°,
∵EE′⊥AC,
∴△AEE′是等腰三角形,
∴AE=AE′=3,
∵GF⊥AD,
∴GD=CF=1,
∴GE′=8-GD-AE′=8-3-1=4,
在Rt△GFE′中,GE′=4,GF=8,
∴E′F===4
故选C.
点评:本题考查的是最短路线问题及正方形的性质,根据题意作出辅助线是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网