题目内容

(2011•攀枝花)如图,已知二次函数y=x2+bx+c的图象的对称轴为直线x=1,且与x轴有两个不同的交点,其中一个交点坐标为(﹣1,0).
(1)求二次函数的关系式;
(2)在抛物线上有一点A,其横坐标为﹣2,直线l过点A并绕着点A旋转,与抛物线的另一个交点是点B,点B的横坐标满足﹣2<xB,当△AOB的面积最大时,求出此时直线l的关系式;
(3)抛物线上是否存在点C使△AOC的面积与(2)中△AOB的最大面积相等.若存在,求出点C的横坐标;若不存在说明理由.
解:(1)二次函数y=x2+bx+c图象的对称轴是直线x=1,且过点A(﹣1,0),
代入得:﹣=1,1﹣b+c=0,
解得:b=﹣2,c=﹣3,
所以二次函数的关系式为:y=x2﹣2x﹣3;
(2)抛物线与y轴交点B的坐标为(0,),
设直线AB的解析式为y=kx+m,


∴直线AB的解析式为y=x﹣
∵P为线段AB上的一个动点,
∴P点坐标为(x,x﹣).(0<x<3)
由题意可知PE∥y轴,∴E点坐标为(x,x2﹣x﹣),
∵0<x<3,
∴PE=(x﹣)﹣(x2﹣x﹣)=﹣x2+x,
(3)由题意可知D点横坐标为x=1,又D点在直线AB上,
∴D点坐标(1,﹣1).

①当∠EDP=90°时,△AOB∽△EDP,

过点D作DQ⊥PE于Q,
∴xQ=xP=x,yQ=﹣1,
∴△DQP∽△AOB∽△EDP,

又OA=3,OB=,AB=
又DQ=x﹣1,
∴DP=(x﹣1),

解得:x=﹣1±(负值舍去).
∴P(﹣1,)(如图中的P1点);
②当∠DEP=90°时,△AOB∽△DEP,

由(2)PE=﹣x2+x,DE=x﹣1,

解得:x=1±,(负值舍去).
∴P(1+﹣1)(如图中的P2点);
综上所述,P点坐标为(﹣1,)或(1+﹣1).解析:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网