Ŀ
СӱСӢСС˹ͬ̽ʽ-x
2
+4x-5ֵ·ֹСӱֵΪ-1ʱxֵСӢֵΪ0ʱxֵССֵСֵӺͨ̽дǣ
AСӱΪֻеx=2ʱ-x
2
+4x-5ֵΪһl
BСӢΪҲʵxʹ-x
2
+4x-5ֵΪ0
CСֵxȡС2ʵʱ-x
2
+4x-5ֵxļССΪûСֵ
DС-x
2
+4x-5ֵxı仯仯Ϊûֵ
ϰ
y=-x
2
+4x-5öκʣκֵͬʱݶκĶԳԼyxı仯ɶĸͬѧĽ۽жϣ
⣺Ay=-x
2
+4x-5x=-
4
2(-1)
=2ʱy
ֵ
=-1СӱĽȷģ
BΪκֵ-10СӢĽȷ
Cx2ʱyxļССûСֵСĽȷ
Dx2ʱyxx=2ʱyֵΪ-1x2ʱyxССĽ۴
ѡD
ǶκֵͨκֵöκʣжĸͬѧĽۣ
ϰϵд
ǻӢSpark۷ѵϵд
ʦСϵд
ðĶɳϵд
Խѵϵд
ʯɽÿͨϵд
68Уͼҵѧȫϵд
ֱĩϵд
ٷְĩģϵд
ºĶִĿĶϵд
ѧͨĩϵд
Ŀ
СӱСӢСС˹ͬ̽ʽ-x
2
+4x-5ֵ·ֹСӱֵΪ-1ʱxֵСӢֵΪ0ʱxֵССֵСֵӺͨ̽д
A.
СӱΪֻеx=2ʱ-x
2
+4x-5ֵΪһl
B.
СӢΪҲʵxʹ-x
2
+4x-5ֵΪ0
C.
СֵxȡС2ʵʱ-x
2
+4x-5ֵxļССΪûСֵ
D.
С-x
2
+4x-5ֵxı仯仯Ϊûֵ
СӱСӢСС˹ͬ̽ʽ-x
2
+4x-5ֵ·ֹСӱֵΪ-1ʱxֵСӢֵΪ0ʱxֵССֵСֵӺͨ̽дǣ
AСӱΪֻеx=2ʱ-x
2
+4x-5ֵΪһl
BСӢΪҲʵxʹ-x
2
+4x-5ֵΪ0
CСֵxȡС2ʵʱ-x
2
+4x-5ֵxļССΪûСֵ
DС-x
2
+4x-5ֵxı仯仯Ϊûֵ
СӱСӢСС˹ͬ̽ʽ-x
2
+4x-5ֵ·ֹСӱֵΪ-1ʱxֵСӢֵΪ0ʱxֵССֵСֵӺͨ̽дǣ
AСӱΪֻеx=2ʱ-x
2
+4x-5ֵΪһl
BСӢΪҲʵxʹ-x
2
+4x-5ֵΪ0
CСֵxȡС2ʵʱ-x
2
+4x-5ֵxļССΪûСֵ
DС-x
2
+4x-5ֵxı仯仯Ϊûֵ
СӱСӢСС˹ͬ̽ʽx
2
+4x5ֵ·ֹСӱֵΪ1ʱxֵСӢֵΪ0ʱxֵССֵСֵӺͨ̽д
[ ]
AСӱΪֻеx=2ʱx
2
+4x5ֵΪһl
BСӢΪҲʵxʹx
2
+4x5ֵΪ0
CСֵxȡС2ʵʱx
2
+4x5ֵxļССΪûСֵ DС֩x
2
+4x5ֵxı仯仯Ϊûֵ
ѧ
Ӣ
ѧ
ѧ
Ӣ
ѧ
Сѧ
ѧ
Ӣ
Ķ
ѻشϰ
δشϰ
Ŀ
Ծ
ϰ