题目内容

在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A、B重合),过点M作MN∥BC交AC于点N. 以MN为直径作⊙O,并在⊙O内作内接矩形AMPN,令AM=x.

(1) 当x为何值时,⊙O与直线BC相切?

(2)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y与x间函数关系式,并求x为何值时,y的值最大,最大值是多少?

 

(1)如图,设直线BC与⊙O相切于点D,连接OA、OD,则OA=OD=MN

在Rt⊿ABC中,BC==5

∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C

⊿AMN∽⊿ABC,∴

∴MN=x, ∴OD=x

过点M作MQ⊥BC于Q,则MQ=OD=x,

在Rt⊿BMQ和Rt⊿BCA中,∠B是公共角

∴Rt⊿BMQ∽Rt⊿BCA,

,∴BM==x,AB=BM+MA=x +x=4,∴x=

∴当x=时,⊙O与直线BC相切,

(3)随着点M的运动,当点P 落在BC上时,连接AP,则点O为AP的中点。

∵MN∥BC,∴∠AMN=∠B,∠AOM=∠APC

∴⊿AMO∽⊿ABP,∴=,AM=BM=2

故以下分两种情况讨论:

①     当0<x≤2时,y=SPMN=x2.

∴当x=2时,y最大=×22=

②     当2<x<4时,设PM、PN分别交BC于E、F

 ∵四边形AMPN是矩形,

∴PN∥AM,PN=AM=x

又∵MN∥BC,∴四边形MBFN是平行四边形

∴FN=BM=4-x,∴PF=x-(4-x)=2x-4,

又⊿PEF∽⊿ACB,∴(2=

∴S⊿PEF=(x-2)2,y= SPMN- S⊿PEF=x-(x-2)2=-x2+6x-6

当2<x<4时,y=-x2+6x-6=-(x-2+2

∴当x=时,满足2<x<4,y最大=2。

综合上述,当x=时,y值最大,y最大=2。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网