题目内容
如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是
- A.12
- B.10
- C.8
- D.6
C
分析:由轴对称的性质可以得出DE=DC,∠AED=∠C=90°,就可以得出∠BED=90°,根据直角三角形的性质就可以求出BD=2DE,然后建立方程求出其解即可.
解答:∵△ADE与△ADC关于AD对称,
∴△ADE≌△ADC,
∴DE=DC,∠AED=∠C=90°,
∴∠BED=90°.
∵∠B=30°,
∴BD=2DE.
∵BC=BD+CD=24,
∴24=2DE+DE,
∴DE=8.
故选C.
点评:本题考查了轴对称的性质的运用,直角三角形的性质的运用,一元一次方程的运用,解答时根据轴对称的性质求解是关键.
分析:由轴对称的性质可以得出DE=DC,∠AED=∠C=90°,就可以得出∠BED=90°,根据直角三角形的性质就可以求出BD=2DE,然后建立方程求出其解即可.
解答:∵△ADE与△ADC关于AD对称,
∴△ADE≌△ADC,
∴DE=DC,∠AED=∠C=90°,
∴∠BED=90°.
∵∠B=30°,
∴BD=2DE.
∵BC=BD+CD=24,
∴24=2DE+DE,
∴DE=8.
故选C.
点评:本题考查了轴对称的性质的运用,直角三角形的性质的运用,一元一次方程的运用,解答时根据轴对称的性质求解是关键.
练习册系列答案
相关题目
| 3 |
| A、4 | ||
| B、6 | ||
C、2
| ||
D、4
|