题目内容

已知:抛物线y=
3
4
(x-1)2-3.
(1)写出抛物线的开口方向、对称轴;
(2)函数y有最大值还是最小值?并求出这个最大(小)值;
(3)设抛物线与y轴的交点为P,与x轴的交点为Q,求直线PQ的函数解析式.
(1)抛物线y=
3
4
(x-1)2-3,
∵a=
3
4
>0,
∴抛物线的开口向上,
对称轴为直线x=1;

(2)∵a=
3
4
>0,
∴函数y有最小值,最小值为-3;

(3)令x=0,则y=
3
4
(0-1)2-3=-
9
4

所以,点P的坐标为(0,-
9
4
),
令y=0,则
3
4
(x-1)2-3=0,
解得x1=-1,x2=3,
所以,点Q的坐标为(-1,0)或(3,0),
当点P(0,-
9
4
),Q(-1,0)时,设直线PQ的解析式为y=kx+b,
b=-
9
4
-k+b=0

解得
k=-
9
4
b=-
9
4

所以直线PQ的解析式为y=-
9
4
x-
9
4

当P(0,-
9
4
),Q(3,0)时,设直线PQ的解析式为y=mx+n,
n=-
9
4
3m+n=0

解得
m=
3
4
n=-
9
4

所以,直线PQ的解析式为y=
3
4
x-
9
4

综上所述,直线PQ的解析式为y=-
9
4
x-
9
4
或y=
3
4
x-
9
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网