题目内容

如果多项式P=2a2-8ab+17b2-16a+4b+1999,那么P的最小值是多小?
P=2a2-8ab+17b2-16a+4b+1999,
=(a2-16a+64)+(b2+4b+4)+(a2-8ab+16b2)+1931,
=(a-8)2+(b+2)2+(a-4b)2+1931,
∵(a-8)2和(b+2)2和(a-4b)2均为非负数,
当a-8=0 b+2=0时,P=256+1931=2187
b+2=0 a-4b=0时,P=256+1931=2187
a-4b=0 a-8=0时,P=16+1931=1947
∴P的最小值是1947.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网