题目内容
如图,如果“仕”所在位置的坐标为(-1,-2),“相”所在位置的坐标为(2,-2),那么“炮”所在位置的坐标为( )
A. (-3,1) B. (1,-1) C. (-2,1) D. (-3,3)
化简求值:(﹣3x2﹣10y2+2x)﹣2(2x2﹣5y2)+3(-2x2﹣8)+6x,其中x,y满足|y﹣5.3|+(x+2)2=0.
如图,菱形ABCD的两条对角线相交于点O,若AC=8,BD=6,过点D作DE⊥AB,垂足为E,则DE的长是( )
A. 2.4 B. 4.8 C. 7.2 D. 10
若方程是二元一次方程,则a的值是___________
下列方程是二元一次方程的是( )
A. B. C. D.
某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.
(1)求A型空调和B型空调每台各需多少元;
(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?
(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?
在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为_____.(结果不取近似值)
如图,由12个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点,已知这个大矩形网格的宽为6,△ABC的顶点都在格点.
(1)求每个小矩形的长与宽;
(2)在矩形网格中找一格点E,使△ABE为直角三角形,求出所有满足条件的线段AE的长度.
(3)求sin∠BAC的值.
方程x2-3x=0的根是( )
A. x1=x2=0 B. x1=x2=3 C. x1=0,x2=3 D. x1=0,x2=-3